STT Fake Data Generator

S.L.Linn 12 Jan 2002

Overview

A Fake data generator was implemented for use with DFEC board in the test stand located in FCH3. The board uses a 53MHz clock from a data pump, which is transmitted to the board through a LVDS cable into the link2 connection. The outputs are sent to the two G-link transmitters in slot 4. The fiber cables are routed to MCH2. The SMT data uses the top transmitter in 16 bit mode. Track data uses the L3_OUT bus, which feeds the bottom G-link transmitter in 20 bit mode. The event is repeated every 1 sec. In MCH2 the cables are grey(CFT) and orange(SMT). The stttest.bit file was downloaded to the 4^{th} slot in the FCH3 test stand via the JTAG interface. In the future, I will implement the download using a compact flash card.

A fake event was taken from the L2STT Monte Carlo, where a 50 GeV muon was simulated at phi=82.5 degrees.

CFT Data

The track hits CFT sector=17/fiber doublet=22, and the L2 trigger produces the following output stream.

. . .

F0 0000

F0 0000

B5 0301

B0 1110

B0 01A2

BO FFFF

B0 0000

B0 0000

B0 0114

B0 3C02

B0 A201

BA 735B

F0 0000

F0 0000

. . .

where bits [0:19] are reversed in the transmitted data and F00000 are filler words. Bits [17:23] are G-link controls.

SMT Data

SMT data is delayed by ~ 5 us with respect to the CFT data. The SMT data consists of 7 hits to form a cluster with centroid at (6.7101, 0.883403, 2.22355) cm. The hits are in Crate=0,HDI=5, and Chip=4 with

hit	chan	data
1	2	8
2	3	11
3	4	29
4	5	11
5	6	15
6	7	11
7	8	11

The HDI corresponding to bits [0:7] is given the index 4, however, the cluster in HDI index 5 is repeated.

This produces the following data stream

```
FO COCO - fill
FO COCO - fill
B0 0505 - seq
B0 0504 - hdi
B0 8484 - chip
B0 0000 - zero
B0 0202 - chan 1
B0 0808 - data 1
B0 0303 - chan 2
B0 0B0B - data 2
B0 0404 - chan 3
B0 1D0D - data 3
B0 0505 - chan 4
B0 0B0B - data 4
B0 0606 - chan 5
B0 OFOF - data 5
B0 0707 - chan 6
B0 0B0B - data 6
B0 0808 - chan 7
B0 0B0B - data 7
B0 C0C0 - fill
B0 C0C0 - fill
FO COCO - fill
F0 C0C0 - fill
F0 C0C0 - fill
```

where bits [0:19] are reversed in the transmitted data and F0C0C0 are filler words.

VHDL

The design is a block diagram called stttest.bde. This entity has two inputs: clock and reset signals. The two outputs are quad_out(SMT) and l3_out(CFT). Stttest connects four processes which are finite state machines:

L1.vhd - generates a pulse every 10 seconds Delta.vhd - delays the llacc signal by ~5us Cft.vhd - stores and outputs cft data Smt.vhd - stores and outputs smt data

The top level testbench is called tb.vhd. It is configured and executed by Tb_beh_cfg.vhd and tb_beh.do for functional simulations, and Tb_tim_cfg.vhd and tb_tim.do for timing simulations.

(C)ALDEC. 2230 Corpo Henderson	Inc orate Circle I, NV 89014	ALDEC AUTOMATED LOGIC DESIGN COMPANY, Inc.
Created:	3/8/2001	
Title:	STTTest	

Synthesis

From the Design Flow Manager -> synthesis options-> Run Mode: ->choose GUI and Top Level Unit: choose stttest from the pulldown menu.

Choose synthesis and FPGA Express will start and open a window. The left window will have a file structure stttest->WORK->all-design-files.vhd. Choose stttest and then SYNTHESIS->update.

From the pull-down menu choose stttest as the top level design A box will open. Set clock frequency to 53 MHz and uncheck []skip constraints.

From pull down menus choose: Vendor(Xilinx), Device(V600BG560), Speed(-5) and Family(VIRTEX). OK.

A chip will be created in the right window called *stttest*. Choose the chip. From the high level menu choose SYNTHESIS->edit constraints->ports->Use I/O Reg->true

Global Bufer-> BUFGP for clocks Close

Choose chip SYNTHESIS->Optimize chip SYNTHESIS->Export Netlist Exit

Implementation

From the Flow Manager -> implement options->GUI Brouse to find the Netlist file $c:/My_Designs/stttest/synthesis/stttest.edf$. OK.

Choose implement. A box will open saying that the synthesis is not up to date… and choose NO.

A window will open with a box for the constraints file. Choose custom and brouse to find the configuration file $c:/My_Designs/stttest/src/u5_pins.cfg$ Design->options->

Implementation: edit options->optimize and map -> Pack I/O Reg -> Inp and Out. OK.

Set part if necessary.
Simulation: edit options->sim data options->Active VHDL
Configuration -> JTAG

edit options->readback [X] Enable readback

OK. OK. Design->Implement Exit.

Data Formats

CFT data Format																	
23-20	19-16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0 bits
glink	cont headers, data, trailer															type	
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 blank
В	5 header length=03 number of objects													head 1			
В	0 h	neadei	r forma	at	C	bject	format		0	bject I	ength:	=??					head 2
В	0 bunch number data type=A2-A5												head 3				
В	0 rotation number														head 4		
В	0 algorithm minV algorithm maxV													head 5			
В	0 s	tatus							р	roces	??	???					head 6
В	0.5	S F	Pt bin	E	Ext Pt		Н	IPS L	.PS e	rror co	ode	R	P	SC RA	4		track data
В	0 r	elativ	e phi =	1-44			15	SO e	IS D) T	K sec	tor add	dress	= 1-80			track data
В	0 0	lata ty	pe=A2	2-A5					b	unch i	numbe	er					trailer 1
В	ΑI	ongitu	idinal p	parity													trailer 2
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 blank
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 blank
Note:	bits [0-1	5] are	revers	sed be	efore tr	ansm	ission										

SMT data Format																	
23-20	19-16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0 bits
glink	cont															type	
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 blank
В	0 Sequencer ID Sequencer ID														Seq		
В	0	0 status HDI ID status HDI ID													HDI		
В	0	0 chip ID chip ID													Chip		
В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 zero
В	0	0 channel # channel #															cahn
В	0	data							d	ata							adc
В	0	C0							C	0							EOR
В	0	C0							C	0							last
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 blank
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 blank
Note:	bits [0-	15] are	revers	sed be	fore tr	ansm	ission										